Binary Arithmetic

Binary arithmetic is essential part of all the digital computers and many other digital system.

Binary Addition

It is a key for binary subtraction, multiplication, division. There are four rules of binary addition.

Case	Α	+	В	Sum	Carry
1	0	+	0	0	0
2	0	+	1	1	0
3	1	+	0	1	0
4	1	+	1	0	1

In fourth case, a binary addition is creating a sum of (1 + 1 = 10) i.e. 0 is written in the given column and a carry of 1 over to the next column.

Example – Addition		
0011010 + 001100 = 00100110	11	carry
	0011010	= 2610
	+0001100	= 1210
	0100110	= 3810

Binary Subtraction

Subtraction and Borrow, these two words will be used very frequently for the binary subtraction. There are four rules of binary subtraction.

Case	Α	15	В	Subtract	Borrow
1	0		0	0	0
2	1	-	0	1	0
3	1	22	1	0	0
4	0	-	1	0	1

Example – Subtraction

0011010 - 001100 = 00001110	1 1	borrow
	0011010	= 2610
	-0001100	= 1210
	0001110	= 1410

Binary Multiplication

Binary multiplication is similar to decimal multiplication. It is simpler than decimal multiplication because only 0s and 1s are involved. There are four rules of binary multiplication.

Case	A x B		В	Multiplication	
1	0	x	0	0	
2	0	х	1	0	
3	1	x	0	0	
4	1	х	1	1	

Example – Multiplication

Example:

0011010 x 001100 = 100111000

0011010	= 2610
x0001100	= 1210
0000000	
0000000	
0011010	
0011010	
0100111000	= 31210

Binary Division

Binary division is similar to decimal division. It is called as the long division procedure.

Example – Division

101010 / 000110 = 000111

$$\begin{array}{r}
111 = 7_{10} \\
000110 \overline{-1^{1}0\ 10\ 10} = 42_{10} \\
-110 = 6_{10} \\
\overline{10} \\
-110 \\
110 \\
-110 \\
0
\end{array}$$

Octal Arithmetic

Octal Number System

Following are the characteristics of an octal number system.

- Uses eight digits, 0,1,2,3,4,5,6,7.
- Also called base 8 number system.
- Each position in an octal number represents a 0 power of the base (8). Example: 8⁰
- Last position in an octal number represents an x power of the base (8). Example: 8^x where x represents the last position 1.

Example

Octal Number – 125708

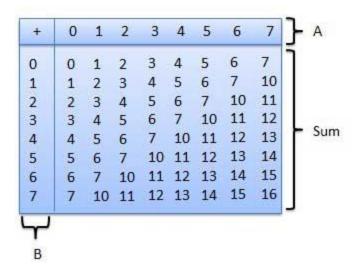
Calculating Decimal Equivalent –

Step	Octal Number	Decimal Number
Step 1	125708	$((1 \times 8^4) + (2 \times 8^3) + (5 \times 8^2) + (7 \times 8^1) + (0 \times 8^0))_{10}$
Step 2	12570 ₈	$(4096 + 1024 + 320 + 56 + 0)_{10}$
Step 3	125708	549610

Note – 12570₈ is normally written as 12570.

Octal Addition

Following octal addition table will help you to handle octal addition.



To use this table, simply follow the directions used in this example: Add 6_8 and 5_8 . Locate 6 in the A column then locate the 5 in the B column. The point in 'sum' area where these two columns intersect is the 'sum' of two numbers.

$6_8 + 5_8 = 13_8.$		
Example – Addition		
4568 + 1238 = 6018	11	carry
	456	= 30210
	+123	= 8310
	601	= 38510

Octal Subtraction

The subtraction of octal numbers follows the same rules as the subtraction of numbers in any other number system. The only variation is in borrowed number. In the decimal system, you borrow a group of 10_{10} . In the binary system, you borrow a group of 2_{10} . In the octal system you borrow a group of 8_{10} .

Example – Subtraction Example: 4568-1738 = 3338 8 borrow ³456 = 30210 -173 = 12310 263 = 17910

Hexadecimal Arithmetic

Hexadecimal Number System

Following are the characteristics of a hexadecimal number system.

- Uses 10 digits and 6 letters, 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.
- Letters represents numbers starting from 10. A = 10, B = 11, C = 12, D = 13, E = 14, F = 15.
- Also called base 16 number system.
- Each position in a hexadecimal number represents a 0 power of the base (16). Example -16^{0}
- Last position in a hexadecimal number represents an x power of the base (16). Example
 16^x where x represents the last position 1.

Example

Hexadecimal Number – 19FDE₁₆

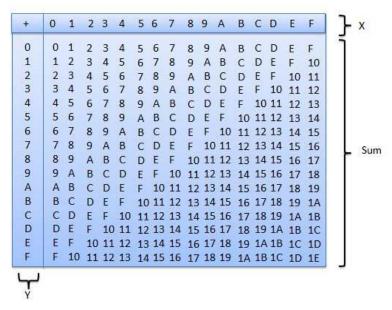
Calculating Decimal Equivalent –

Step	Binary Number	Decimal Number
Step 1	19FDE ₁₆	$((1 \times 16^4) + (9 \times 16^3) + (F \times 16^2) + (D \times 16^1) + (E \times 16^0))_{10}$
Step 2	19FDE ₁₆	$((1 \times 16^4) + (9 \times 16^3) + (15 \times 16^2) + (13 \times 16^1) + (14 \times 16^0))_{10}$
Step 3	19FDE ₁₆	$(65536 + 36864 + 3840 + 208 + 14)_{10}$
Step 4	19FDE ₁₆	10646210

Note – 19FDE₁₆ is normally written as 19FDE.

Hexadecimal Addition

Following hexadecimal addition table will help you greatly to handle Hexadecimal addition.



To use this table, simply follow the directions used in this example – Add A_{16} and 5_{16} . Locate A in the X column then locate the 5 in the Y column. The point in 'sum' area where these two columns intersect is the sum of two numbers.

 $A_{16} + 5_{16} = F_{16}$.

Example – Addition

4A616 + 1B316 = 65916

1 carry 4 A 6 = 119010 + 1 B 3 = 43510 6 5 9 = 162510

Hexadecimal Subtraction

The subtraction of hexadecimal numbers follow the same rules as the subtraction of numbers in any other number system. The only variation is in borrowed number. In the decimal system, you borrow a group of 10_{10} . In the binary system, you borrow a group of 2_{10} . In the hexadecimal system you borrow a group of 16_{10} .

Example - Subtraction

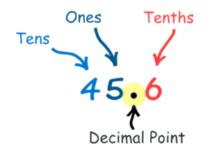
4A616 - 1B316 = 2F316	16	borrow
	³ 4 A 6	= 119010
	- 1 B 3	= 43510
	2 F 3	= 75510

Floating Number Systems

Decimals

A Decimal Number (based on the number 10) contains a Decimal Point.

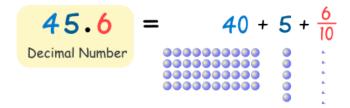
First, let's have an example:



Here is the number "forty-five and six-tenths" written as a decimal number:

The decimal point goes between Ones and Tenths.

45.6 has 4 Tens, 5 Ones and 6 Tenths, like this:



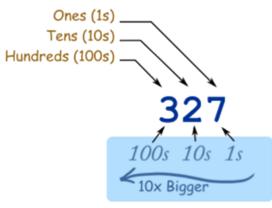
Place Value

It is all about Place Value !

When we write numbers, the **position** (or "**place**") of each digit is important.

In the number 327:

- the "7" is in the **Ones** position, meaning 7 ones (which is 7),
- the "2" is in the **Tens** position meaning 2 tens (which is twenty),
- and the "3" is in the **Hundreds** position, meaning 3 hundreds.



"Three Hundred Twenty Seven"

As we move left, each position is 10 times bigger!

Tens are 10 times bigger than **Ones Hundreds** are 10 times bigger than **Tens**

... and ...

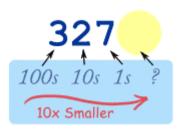
As we move right, each position is 10 times **smaller**.

From Hundreds, to Tens, to Ones

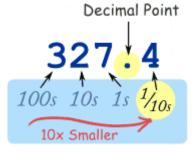
But what if we continue past Ones?

What is **10 times smaller** than Ones?

110ths (Tenths) are!



But we must first put a **decimal point**, so we know exactly where the Ones position is:

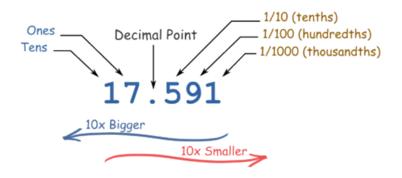


"three hundred twenty seven and four tenths"

but we usually just say "three hundred twenty seven **point four**"

And that is a Decimal Number!

We can continue with smaller and smaller values, from **tenths**, to **hundredths**, and so on, like in this example:



Large and Small

So, our Decimal System lets us write numbers as large or as small as we want, using the decimal point. Digits can be placed to the left or right of a decimal point, to show values greater than one or less than one.

The **decimal point** is the most important part of a Decimal Number. Without it we are lost, and don't know what each position means.

17.591

Ways to think about Decimal Numbers ...

... as a Whole Number Plus Tenths, Hundredths, etc

We can think of a decimal number as a whole number plus tenths, hundredths, etc:

Example 1: What is 2.3?

- On the left side is "2", that is the whole number part.
- The 3 is in the "tenths" position, meaning "3 tenths", or 3/10
- So, 2.3 is "2 and 3 tenths"

Example 2: What is 13.76?

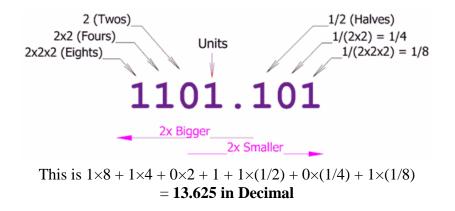
- On the left side is "13", that is the whole number part.
- There are two digits on the right side, the 7 is in the "tenths" position, and the 6 is the "hundredths" position
- So, 13.76 is "13 and 7 tenths and 6 hundredths"

Binary

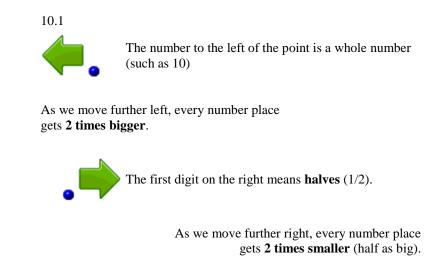
Position

In the Decimal System there are Ones, Tens, Hundreds, etc

In Binary there are Ones, Twos, Fours, etc, like this:



Numbers can be placed to the left or right of the point, to show values greater than one and less than one.



Example: 10.1

The "10" means 2 in decimal,

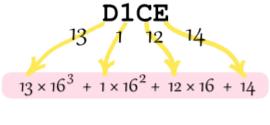
- The ".1" means half,
- So "10.1" in binary is 2.5 in decimal

Hexadecimals

• A Hexadecimal Number is based on the number 16

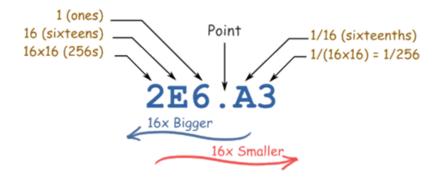
Remember:

Example: What is the decimal value of the hexadecimal number "D1CE"



= 53,248 + 256 + 192 + 14= 53,710 in Decimal

Example: 2E6.A3

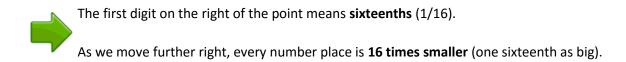


This is $2 \times 16 \times 16 + 14 \times 16 + 6 + 10/16 + 3/(16 \times 16)$ =742.63671875 in Decimal Read below to find out why

Numbers can be placed to the left or right of the point, to show values greater than one or less than one:

The number just to the left of the point is a whole number.

As we move left, every number place is **16 times bigger**.



More Examples

Example 1: What is 4B5 (Hexadecimal)?

- The "4" is in the "16×16" position, so that means 4 ×16×16
- The "B" (11) is in the "16" position, so that means 11 ×16
- The "5" is in the "1" position so that means 5.
- Answer: 4B5 = 4×16×16 + 11×16 + 5 (=1205) in Decimal

Example 2: What is 2.3 (Hexadecimal)?

- On the left side is "2", that is the whole number part.
- The 3 is in the "sixteenths" position, meaning "3 sixteenths", or 3/16
- So, 2.3 is "2 and 3 sixteenths" (=2.1875 in Decimal)